
August 06 Nova Workshop

Detector Control Systems

EPICS Infrastructure
And

Python Interfacing

Client/Server

Hardware DevicesClients Server System

Monitoring
HV Systems

Low Voltage
F.E.B.s
Etc…

Daemon Based
• Separate Service HAL for
each system type
• Scales over conventional
Comm. Protocol
• Common Clients connect
using standardize interfaces

Controls

Database
Logging

Production & Commisioning

Daemon Based
• Separate copies of the daemons run simultaneously with
different hardware lists for Production and Commissioning
• Allows for seamless transitions between detector changes
• Common Clients can be used for both tasks

Clients

Production
HV Systems

Server System Hardware Devices

Production
Monitoring

Production
Controls

Production
Logging

Commissioning
HV Systems

Commissioning
Mon, Control,
Logging

Production
Low Voltage, FBEs

Commissioning
Low Voltage, FBEs

Daemon Structure

Network
I/O Layer

Monitoring
UDP
Client Req.
Server
Broadcast

Controls
TCP
Client/
Server

Channel
Mapper

Logical to
Universal
Mapping/
Translation

External
Channel
Database

Internal Data
Representation

Active buffers
for data
storage
and retrieval

Common to all
sub-systems
with data/HW
abstraction

Hardware
Abstraction
Layer (HAL)

HV Driver

LV Driver

Temp/Env.
Driver

Gen. Device

Device specific
implementation
and data
abstraction

Example HAL Structure

E

Device Data Value
Data Value Type

Device Data Value
Data Value Type

Device Data Value
Data Value Type
Device Data Value
Data Value Type

Data Stack

Device ON
Function Stack

Device OFF
Channel ON
Channel OFF
Channel GET
Channel SET
Alarm Check
Alarm Set
Etc…….

HAL Control
Dev. Initialization

Dev. ID String

Dev. Registration List

Avail. Function Mask

Aux. Function List

Hardware Address Map

Universal Chan
Hardware Address
Universal Chan
Hardware Address
Universal Chan
Hardware Address

Address Translation

Universal Query

Address Query

External Database

Client Structure

Network
I/O Layer

Monitoring
UDP
Client Req.
Server
Broadcast

Controls
TCP
Client/
Server

Internal Data
Representation

Active buffers
for data
storage
and retrieval

Common to all
sub-systems
with data/HW
abstraction

Data
Processing

Filtering
Monitoring
Warnings
Alarms

Data
Modification

Parameter
Assignment

Voltage
Adjustment

Command Execution

User Interface

Display
Monitoring
Warning
Logging

Data Qual.

User Controls

Detector
System
Controls

(voltage, etc…)

Implementation

Choosing an implementation has focused on three external goals in
addition to the detector requirements, to:

Minimize Cost
Minimize Development time
Retain flexibility and expandability

Choosing an existing Detector Controls infrastructure appears to be
the best way to meet these.

Use:
EPICS – Detector controls, client/server protocol, internal data
representation
Python – Cross platform Scripting interface with good EPICS
support/hooks for device control
TKInter – TCL/TK GUI set for building the graphical interfaces with
Python
ROOT – Additional GUI and visualization for data quality/monitoring

Example Implementation

EPICS

I/O Ctrl
High Voltage

Custom
Device Driver

EPICS

I/O Ctrl
DCMs

Custom
Device Driver

EPICS

I/O Ctrl
Other…

Custom
Device Driver

Python

TKInter (TCL/TK)

EPICS

Monitoring/Control
Client

ROOT

QT Widgets

EPICS

Alternate Mon/Ctrl
Client

ROOT

QT Widgets

Aux. Data Quality
Client Etc…

Or

Files
Shared Memory

Databases
Etc…

Controls Branch

Data Quality
Branch

EPICS Infrastructure

EPICS
ClientClient

Server Server

CACA

CA CA

EPICS (Experimental Physics and Control
Systems) developed by Argonne National Lab is
based on a server/client model similar to that
which we desire for NOvA
Provides Infrastructure

Network Protocol
Database handling
Data processing
Hooks for common apps

Python, Perl, C/C++

EPICS Advantages

Cost – It is free!
Protocols and Database management already developed
and well documented.
Runs on multiple platforms including PC/Linux
Used in other large scale experiments, and is well
supported by the labs.
Device drivers for certain “common” instruments
already exist.

i.e. Tek Oscilloscopes, generic CAMAC devices, FNAL beam
monitors etc…

Monitoring and data quality tools already exist and can
be adapted
Tool kits are available to allow for interface of the EPICS
base with external packages (i.e. GUI development)

EPICS Disadvantage

Requires development of dedicated I/O control drivers for each
custom device we want to monitor or control
Requires all clients and servers to be physically on the same local
network (i.e. no direct off-site client access)
Relies on global broadcasts for client/server communication which
complicates partitioning of the experiment into “Production” and
“Test” segments

But there is docs on how to do this
I/O Controller setup is targeted more towards direct hardware
access than to high latency network access

But can write custom IOCs to do this
Client access is via individual record requests, not large block
requests

Inefficient for monitoring LARGE numbers of channels
Ways around this with custom “record” design etc…

Channel Access Example
Example:
Get the value of a high voltage channel for monitoring. (Module 34, Channel 3)
Call the channel “Module34:HV3:Voltage” and make the following requests:

Monitor HV Ctrl Client Client Client Client

Server IOC IOC

DCM Power Supply #2 Temp Probe

IOC

3. TCP Connection Open
between, HV Ctrl and I/O Ctrl
for data transfer.

1. UDP Broadcast Sequence -- Who has the
item Module34:HV3:Voltage?

Check Check CheckCheck

2. UDP Reply from I/O Ctrl
for PS#2 -- I have it!

I/O Ctrl

Power Supply #1

EPICS Performance

Performance depends upon efficient implementation of device
drivers for I/O controllers, and sequencer vs. database operation
modes
Benchmarks from Argonne*:

Machine OS CPU Speed Rec/sec %CPU

MVME16
7

vxWor
ks

68040 33MHz 6000 50

300MHz

MVME51
00

vxWor
ks

PPC750 450MHz 40000** 10**

233MHz

PC Linux P4 2.4GHz 50000 9

10000

10000

MVME
2306

vxWor
ks

PPC604 10

PC Linux PII 27

*Benchmark figures courtesy of Steve Hunt (PSI)
**Extrapolated from performance figures provided by L.Hoff, BNL

This is what we
can expect

Projected Performance

Assuming device drivers similar to the ANL test setup and
hardware access times/topology, we can expect:

≈ 50,000 data values processed per server per second.
Assumes we want to retain a “safe” cpu load (10-20% average)
Assumes EPICS operating in simple database mode

More realistic – Implementation of EPICS control systems at DØ
Central Fiber Tracker (CFT):

1 channel server per 20 DFEAII boards
Run on 1GHz processor linux computer using gigabit fiber to access crate
Monitor and control ≈ 800 values @ 1Hz with 2% cpu load*

Simple linear scaling up to 50k variables and a 3GHz processor
Expected cpu load ≈ 42%

Note: This is “database” mode not monitoring state machine mode

CPU load average per 50k data ≈ 10-50%
*Average cpu ussage, actual load spikes with access operations

Monitoring Load

System Values Channels Total
Low Voltage 6 81 486
High Voltage 2 162 324
DCMs ≈ 20 324 6480
Water Cooling ≈ 16 144 2304
Environmental 100-400 100-400
FEBs (via DCMs) 10-20 20,000 400k

TOTAL
9984

410k w/FEBs

Monitoring load is computed both with and without individual FEB
operational parameters included in the monitoring stream.
Bandwidth per monitoring cycle from raw devices to channel

access servers (w/o FEBs) should be ∼1MByte after overhead

Monitoring Cycle

Without FEB monitoring, we expect to control and
monitor on the order of 10k operational parameters.
We can use the EPICS state machine functionality
instead of the simple database records and remain
within the CPU budget
If the hardware allows, it will be possible to readout and
perform continuous state monitoring at the channel
server level (e.g. 1Hz monitoring cycle)
Periodic state reporting between client and server can be
scheduled for database recording, trend plotting, data
quality analysis etc…
Detection of faults can be reported immediately to the
monitoring clients instead of waiting for a client initiated
request on a slow cycle

Computing Resources

It should be possible to monitor the base 10k operational parameters
from one server
For fault tolerance we should break the load between multiple
servers, each servicing a subset of the monitoring subsystems, and
configured to provide fall over redundancy

DCMs

Server #1 Server #2 Server #3

High V

Low V

Environ.

Cooling

Water

Misc.

DCMs

Server #1 Server #2 Server #3

High V

Low V

Environ.

Cooling

Water

Misc.

Fall over
Redundancy

FEB Monitoring in EPICS

If we include the FEB operational parameters then we need to expand the number of
monitoring nodes to accommodate the load
At a monitoring frequency of 1Hz this means 400k parameters
This means 8 monitoring stations minimum, 10 with double fault fall over
redundancy

Options:
Can reduce the monitoring frequency
Level the FEB monitoring/status information in the primary data stream

Montoring Channels Base
Computing

Fall Over
Redundancy

Total

Base Op.
Parameters

10k 1 Double fault 3

Base + FEBs 410k 9 Double fault 11

Computing Costs

Monitoring server requirements are based on a system
capable of processing 50k records per second

3 GHz processor class Linux PC
Large (2 GB) system memory to aid internal database speed
Gigabit network
1U rack mount

Monitoring Monitoring
Servers

Cost Per Station Total Cost

Integration
Prototype

1 2200 2.2k

Base Op.
Parameters

3 2200 6.6k

Base + FEBs 11 2200 22k

Monitoring Clients

Clients are easier!
Each client can be a dedicated interface to a set of EPICS controlled
parameters
Clients are written in Python with EPICS libraries and TK widget
sets for graphical elements (this is similar to DØ)
This makes clients:

Portable and platform independent
Easy to modify and maintain
Gives reasonable performance

Clients required to do more intensive processing are written in in
C++ using the EPICS libraries and ROOT interface/widgets for
visualization
Logging and database operation can be done in either model using
the standard C++ or Python interfaces to MySQL etc…

Client Development

Monitoring clients can be developed independent of the
channel servers because they use the EPICS protocol and
standard calls for communications
This means client and server development can begin in
parallel
Client/Server integration testing can be performed with
mock servers that used “dummy” device drivers to
generate data streams

This means software development can begin prior to hardware
acquisition
Software is insulated from hardware changes

Server Development

The channel servers (I/O controllers) need to be written in C/C++ with
EPICS libraries.
Custom device drivers will have to be developed for each system we wish
to monitor. This means:

High Voltage system (CAEN)
Low Voltage systems (Wiener)
Data Concentrators Modules
Water and Cooling
Environmental

Most of these systems will be capable of communicating over Ethernet
using IP, which will simplify driver development, but each system will
need a dedicated driver.
The server infrastructure is independent of the device and can be developed
without the hardware
The device drivers NEED example hardware for development and testing
For the integration prototype this means we need to know the hardware
decisions with some lead time to have fully functional monitoring in place

Client/Server Resources
(Development)

Monitoring/Control client and server
development can proceed in parallel

Task Time Span Personnel FTE

Integration Prototype
Monitoring clients and
servers

1.0 1 1.0

Production monitoring,
Control, Logging clients

1.5 years 0.5 0.75

Production Channel servers
(HV, LV, DCM, FEBs, etc…)

2.5 years* 0.25 0.75

Continued Maint, Service,
Updates

5 years 0.125 0.625

*Hardware development dependent

	Detector Control Systems
	Client/Server
	Production & Commisioning
	Daemon Structure
	Example HAL Structure
	Client Structure
	Implementation
	Example Implementation
	EPICS Infrastructure
	EPICS Advantages
	EPICS Disadvantage
	Channel Access Example
	EPICS Performance
	Projected Performance
	Monitoring Load
	Monitoring Cycle
	Computing Resources
	FEB Monitoring in EPICS
	Computing Costs
	Monitoring Clients
	Client Development
	Server Development
	Client/Server Resources(Development)

